Maxwell Technologies’ 2.7V 450F ultracapacitor cell is part of Maxwell’s full featured lineup of energy storage solutions designed to provide support of the latest trends in renewable energy wind turbine pitch control systems, small UPS systems, consumer and industrial electronics and medical equipment. The 2.7V 450F ultracapacitor cell is designed for performance and system optimization in a long life smaller form factor. Whether used alone, integrated into a module assembly, or in a hybrid configuration, Maxwell’s ultracapacitor products will help reduce the overall cost and size of the system while improving return on investments for the customer.

Ultracapacitors are the technology of choice for high energy and high power applications because of their longer operating lifetime, low maintenance requirements, and superior cold weather performance when compared to batteries.

FEATURES AND BENEFITS
• High performance product with low ESR
• Long lifetimes with up to 500,000 duty cycles*
• Small 35mm diameter enables compact system designs
• Snap-in terminals for PCB mounting
• Compliant with UL, RoHS and REACH requirements

TYPICAL APPLICATIONS
• Wind Turbine Pitch Control
• Backup and UPS System
• Consumer and Industrial Electronics
• Medical Equipment
• Emergency Lighting

ORDERING INFORMATION

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Part Number</th>
<th>Package Quantity (MOQ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCAP0450 P270 S18</td>
<td>134380</td>
<td>110</td>
</tr>
</tbody>
</table>

*Results may vary. Additional terms and conditions, including the limited warranty, apply at the time of purchase. See the warranty details for applicable operating and use requirements.
Datasheet: 2.7V 450F ULTRACAPACITOR CELL

PRODUCT SPECIFICATIONS & CHARACTERISTICS

Values are referenced at $T_a = \text{room temperature}$ and $V_{r} = 2.7\text{V}$ rated voltage (unless otherwise noted). Min and Max values indicate product specifications. Typical results will vary and are provided for reference only. Additional terms and conditions, including the limited warranty, apply at the time of purchase. See the warranty details for applicable operating and use requirements.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_R</td>
<td>Rated Voltage</td>
<td>–</td>
<td>–</td>
<td>2.7</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>V_{SURGE}</td>
<td>Surge Voltage</td>
<td>Note 1</td>
<td>–</td>
<td>–</td>
<td>2.85</td>
<td>V</td>
</tr>
<tr>
<td>C_R</td>
<td>Rated Capacitance</td>
<td>BOL, Note 2,8</td>
<td>450</td>
<td>480</td>
<td>540</td>
<td>F</td>
</tr>
<tr>
<td>R_S</td>
<td>Equivalent Series Resistance (ESR$_{DC}$)</td>
<td>BOL, Note 2,8</td>
<td>–</td>
<td>2.8</td>
<td>3.2</td>
<td>mΩ</td>
</tr>
<tr>
<td>I_{LEAK}</td>
<td>Leakage Current</td>
<td>Note 3,8</td>
<td>–</td>
<td>0.5</td>
<td>1.0</td>
<td>mA</td>
</tr>
<tr>
<td>I_{PEAK}</td>
<td>Peak Current</td>
<td>BOL, Note 4,8</td>
<td>–</td>
<td>–</td>
<td>240</td>
<td>A</td>
</tr>
<tr>
<td>I_{MAX}</td>
<td>Continuous Current</td>
<td>BOL, Note 7,8 - $\Delta T = 15\text{°C}$ - $\Delta T = 40\text{°C}$</td>
<td>–</td>
<td>–</td>
<td>28</td>
<td>A$_{RMS}$</td>
</tr>
</tbody>
</table>

ELECTRICAL

LIFE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{65C}</td>
<td>High Temperature Life</td>
<td>$V_R = 2.7\text{V}$ and $T_a = 65\text{°C}$, EOL, Note 8</td>
<td>–</td>
<td>3,000</td>
<td>–</td>
<td>hours</td>
</tr>
<tr>
<td>t_{85C}</td>
<td>De-rated Voltage & Higher Temperature Life</td>
<td>$V_R = 2.3\text{V}$ and $T_a = 85\text{°C}$, EOL, Note 8</td>
<td>–</td>
<td>3,000</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>t_{25C}</td>
<td>Projected Life Time</td>
<td>$V_R = 2.7\text{V}$ and $T_a = 25\text{°C}$, EOL, Note 8</td>
<td>–</td>
<td>3,000</td>
<td>–</td>
<td>%</td>
</tr>
<tr>
<td>n_{CYCLE}</td>
<td>Projected Cycle Life</td>
<td>$T_a = 25\text{°C}$, EOL, Note 6,8</td>
<td>–</td>
<td>1,000,000</td>
<td>–</td>
<td>cycles</td>
</tr>
<tr>
<td>t_{SHELF}</td>
<td>Shelf Life</td>
<td>Stored uncharged, $T_a = 25\text{°C}$ and $\text{RH} \leq 50%$</td>
<td>–</td>
<td>4</td>
<td>–</td>
<td>years</td>
</tr>
</tbody>
</table>
PRODUCT SPECIFICATIONS & CHARACTERISTICS

Values are referenced at $T_a = \text{room temperature}$ and $V_R = 2.7V$ rated voltage (unless otherwise noted). Min and Max values indicate product specifications. Typical results will vary and are provided for reference only. Additional terms and conditions, including the limited warranty, apply at the time of purchase. See the warranty details for applicable operating and use requirements.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_d</td>
<td>Usable Specific Power</td>
<td>BOL, Note 5,8</td>
<td>–</td>
<td>3.6</td>
<td>–</td>
<td>kW/kg</td>
</tr>
<tr>
<td>P_{MAX}</td>
<td>Impedance Match Specific Power</td>
<td>BOL, Note 5,8</td>
<td>–</td>
<td>7.5</td>
<td>–</td>
<td>kW/kg</td>
</tr>
<tr>
<td>E_d</td>
<td>Gravimetric Specific Energy</td>
<td>BOL, Note 5,8</td>
<td>–</td>
<td>6.0</td>
<td>–</td>
<td>Wh/kg</td>
</tr>
<tr>
<td>E_{MAX}</td>
<td>Stored Energy</td>
<td>BOL, Note 5,8,9</td>
<td>–</td>
<td>0.45</td>
<td>–</td>
<td>Wh</td>
</tr>
</tbody>
</table>

TEMPERATURE

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_A</td>
<td>Operating Temperature</td>
<td>Cell case temperature</td>
<td>-40</td>
<td>25</td>
<td>65</td>
<td>°C</td>
</tr>
<tr>
<td>R_{th}</td>
<td>Thermal Resistance</td>
<td>Case to ambient, Note 7</td>
<td>–</td>
<td>5.7</td>
<td>–</td>
<td>°C/W</td>
</tr>
<tr>
<td>C_{th}</td>
<td>Thermal Capacitance</td>
<td>–</td>
<td>88</td>
<td>–</td>
<td>–</td>
<td>J/°C</td>
</tr>
</tbody>
</table>

PHYSICAL

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>Mass</td>
<td>–</td>
<td>–</td>
<td>75</td>
<td>–</td>
<td>g</td>
</tr>
<tr>
<td></td>
<td>Vibration – Sine Wave</td>
<td>–</td>
<td>IEC 60068-2-6</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Shock</td>
<td>–</td>
<td>IEC 60068-2-27</td>
<td>–</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SAFETY

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typical</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Certifications</td>
<td>–</td>
<td>UL810A, RoHS, REACH</td>
<td>–</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Datasheet: 2.7V 450F ULTRACAPACITOR CELL

maxwell.com
NOTES

1. Surge Voltage
 Absolute maximum voltage, non-repetitive. The duration must not exceed 1 second.

2. Rated Capacitance & ESRDC (Measurement Method)
 • Capacitance: Constant current charge (10mA/F) to \(V_{C,R} \), 5 min hold at \(V_{C,R} \)
 constant current discharge (10mA/F) to 0.1V.
 • ESRDC: Constant current charge (10mA/F) to \(V_{C,R} \), 5 min hold at \(V_{C,R} \)
 constant current discharge (40 °C \(C_n \) \(V_{C,R} \) [mA]) to 0.1V.

3. Leakage Current (Measurement Method)
 • Current measured after 72 hours of constant voltage hold at \(V_{C,R} \) and 25°C.
 • If applicable, module leakage current is the sum of cell leakage current and
 bypass current created by balancing circuit.

4. Peak Current
 • Current needed to discharge cell or module from \(V_{C,R} \) to 1/2\(V_{C,R} \) in 1 second.
 \[I_{PEAK} = \frac{\Delta V}{\Delta t / CR + RS} \]
 where \(I_{PEAK} \) is the maximum peak current (A);
 \(\Delta V \) is the voltage drop during first 10ms of discharge (V);
 \(\Delta t / CR + RS \) is the time from discharge start to reach \(1/2V_{C,R} \) (s);
 \(RS \) is the maximum BOL ESRDC (Ω);
 \(CR \) is the rated BOL capacitance (F).

5. Energy & Power (Based on IEC 62576)
 • Usable Specific Power, \(P_u \) (W/kg) = \(\frac{0.12V_{C,R}^2}{RS \times m} \)
 • Impedance Match Specific Power, \(P_{IMAX} \) (W/kg) = \(\frac{0.25V_{C,R}^2}{RS \times m} \)
 • Gravimetric Specific Energy, \(E_u \) (Wh/kg) = \(\frac{E_{MAX}}{m \times RS} \)
 • Stored Energy, \(E_{MAX} \) (Wh) = \(\frac{3}{2} C_n \times V_{C,R}^2 \)
 where \(V_{C,R} \) is the rated voltage (V);
 \(RS \) is the maximum BOL ESRDC (Ω);
 \(m \) is the typical mass (kg);
 \(C_n \) is the rated BOL capacitance (F).

6. Projected Cycle Life
 • Constant current charge-discharge cycle from \(V_{C,R} \) to 1/2\(V_{C,R} \) at 25°C.
 • Cycle life is dependent upon application-specific characteristics. Actual results will vary.

7. Continuous Current & Thermal Resistance
 Maximum current which can be used continuously within the allowed
 temperature range.
 \[I_{MAX} = \sqrt{\frac{\Delta T}{R_S \times R_T}} \]
 where \(I_{MAX} \) is the maximum continuous current (A);
 \(\Delta T \) is the change in temperature (°C);
 \(R_S \) is the typical thermal resistance (°C/W);
 \(R_T \) is the maximum BOL ESRDC (Ω).

8. BOL & EOL Conditions
 • BOL (Beginning of Life): Rated/Initial product performance
 – Capacitance: 80% of min. BOL rating \((0.8 \times \min. C_n) \)
 – ESRDC: 200% of max. BOL rating \((2 \times \max. RS) \)
 • EOL (End of Life):
 – Capacitance: 10% of min. BOL rating \((0.1 \times \min. C_n) \)
 – ESRDC: 250% of max. BOL rating \((2.5 \times \max. RS) \)

9. Transportation Regulation
 • Per United Nations material classification UN3499, all Maxwell ultracapacitor
 cells have less than 10Wh stored energy to meet the requirements of Special
 Provisions 361. Both individual ultracapacitors and modules composed of
 ultracapacitors shipped by Maxwell can be transported without being treated
 as dangerous goods (hazardous materials) under transportation regulations.

DETAILED PRODUCT DESCRIPTION

Introduction
The BCA0450 P270 S18 energy storage cell is a robust ultracapacitor solution in a cylindrical style can with snap-in type terminals.

Technology Overview
Ultracapacitor, also known as supercapacitor or electric double layer capacitor (EDLC), delivers energy at relatively high rates (beyond those accessible with batteries). Ultracapacitors store charge electrostatically (non-Faradaic) by reversible adsorption of the electrolyte onto electrochemically stable high surface area carbon electrodes. Charge separation occurs on polarization at the electrode/electrolyte interface, producing a double layer. This mechanism is highly reversible, allowing the ultracapacitor to be charged and discharged hundreds of thousands of times.*

Ultracapacitor Construction
An ultracapacitor is constructed with symmetric carbon positive and negative electrodes separated by an insulating ion-permeable separator and packaged into a container filled with organic electrolyte (salt/solvent) designed to maximize ionic conductivity and electrode wetting. It is the combination of high surface-area activated carbon electrodes (typically >1500m²/g) with extremely small charge separation (Angstroms) that results in high capacitance.

Figure 1: Ultracapacitor Structure Diagram

*Results may vary. Additional terms and conditions, including the limited warranty, apply at the time of purchase. See the warranty details for applicable operating and use requirements.
Datasheet: 2.7V 450F ULTRACAPACITOR CELL

MECHANICAL DRAWINGS

BCAP0450 P270 S18

WARNING:
The blank terminals are provided for mechanical support only. The corresponding PCB patterns must be isolated from positive and negative terminals. Failure to isolate the blank terminals may result in malfunction of the product.

<table>
<thead>
<tr>
<th>DIMENSION (Tolerance)</th>
<th>L (±1.0)</th>
<th>D (+1.0)</th>
<th>H (±1.0)</th>
<th>A (±0.5)</th>
<th>B (±1.0)</th>
<th>C (±0.5)</th>
<th>t (±0.1)</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCAP0450 P270 S18</td>
<td>63.5</td>
<td>35.0</td>
<td>5.6</td>
<td>22.5</td>
<td>19.5</td>
<td>5.6</td>
<td>1.5</td>
<td>mm</td>
</tr>
</tbody>
</table>

Products and related processes may be covered by one or more U.S. or international patents and pending applications. Please see www.maxwell.com/patents for more information. Product dimensions are for reference only unless otherwise identified. Maxwell Technologies reserves the right to make changes without further notice to any products herein. "Typical" parameters which may be provided in Maxwell Technologies datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Please contact Maxwell Technologies directly for any technical specifications critical to application.