

2.7V 5F ULTRACAPACITOR CELL

BCAP0005 P270 S01 BCAP0005 P270 S12

High Power Energy Solution in Compact Form Factor

Maxwell Technologies' 2.7V 5F ultracapacitor cells are part of Maxwell's Standard Series of full featured 2.7V products.

Maxwell's Standard Series spans a spectrum of form factors, and our strong cell design engineering experience enables us to produce cells with very low equivalent series resistance (ESR). This translates into increased power density and a small system footprint to meet the specific requirements of your solution. The Standard Series is specialized for systems operating in normal ambient environments and provides system designers with the advantages of significantly more reliable performance under a wider temperature range than most other energy storage options available. Standard Series cells are customizable for a variety of applications that need fast charge/discharge capability and long life.

Whether used alone, integrated into a module assembly, or in a hybrid configuration, Maxwell's 2.7V products will help reduce the overall cost and size of the system while improving return on investment for the customer. Ultracapacitors are the technology of choice for long life and high-power applications because of their durability, low maintenance requirements, and superior cold weather performance when compared to batteries.

FEATURES & BENEFITS

- High performance product with low ESR
- Exceptional shock and vibration resistance
- Long lifetimes with up to 500,000 duty cycles*
- Compliant with UL, RoHS and REACH requirements

TYPICAL APPLICATIONS

- Actuators
- Emergency Lighting
- Telematics
- Automotive
- Security Equipment
- Backup System
- Smoke Detectors
- Advanced Metering

ORDERING INFORMATION

Model Number	Part Number	Package Quantity (MOQ)
BCAP0005 P270 S01	133514	4,000
BCAP0005 P270 S12	135966	2,520

^{*} Results may vary. Additional terms and conditions, including the limited warranty, apply at the time of purchase. See the warranty details for applicable operating use and requirements.

Maxwell UF

PRODUCT SPECIFICATIONS & CHARACTERISTICS

Values are referenced at T_A = room temperature and V_R = 2.7V rated voltage (unless otherwise noted). Min and Max values indicate product specifications. Typical results will vary and are provided for reference only. Additional terms and conditions, including the limited warranty, apply at the time of purchase. See the warranty details for applicable operating and use requirements.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
INITIAL										
V _R	Rated Voltage		-	-	2.7	V _{DC}				
V _{SURGE}	Surge Voltage	Note 1	-	-	2.85	V _{DC}				
C _R	Rated Capacitance	BOL, Note 2,8	4.5	5.0	6.0	F				
Rs	Equivalent Series Resistance (ESR _{DC})	BOL, Note 2,8	-	36	45	mΩ				
ILEAK	Leakage Current	Note 3	-	5	8	μA				
I _{PEAK}	Peak Current	BOL, Note 4,8	-	-	5.1	А				
I _{MAX}	Continuous Current	BOL, Note 7,8 - ΔT = 15°C - ΔT = 40°C	-	-	2.4 3.8	Arms				
LIFE										
t _{65C}	High Temperature Life	V_R = 2.7V and T_A = 65°C, EOL, Note 8 - Capacitance change ΔC from min C_R - Resistance change ΔR from max R_S		1,500 -20 +100	- - -	hours % %				
t _{85C}	De-rated Voltage & Higher Temperature Life	V_R = 2.3V and T_A = 85°C, EOL, Note 8 - Capacitance change ΔC from min C_R - Resistance change ΔR from max R_S	- - -	1,500 -20 +100	- - -	hours % %				
t _{25C}	Projected Lifetime	V_R = 2.7V and T_A = 25°C, EOL, Note 8 - Capacitance change ΔC from min C_R - Resistance change ΔR from max R_S	- - -	10 -20 +100	- - -	years % %				
N _{cycle}	Projected Cycle Life	T_A = 25°C, EOL, Note 6,8 - Capacitance change Δ C from min C_R - Resistance change Δ R from max R_S		500,000 -20 +100	- - -	cycles % %				
tshelf	Shelf Life	Stored uncharged, T _A = 25°C and RH ≤ 50%, Note 8 - Capacitance ≥ min. BOL C _R - Resistance ≤ max. BOL R _S	-	4	-	years				

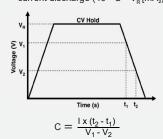
Page 2 Document Number: 3001974-EN.4 maxwell.com

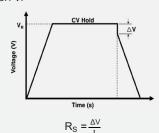
PRODUCT SPECIFICATIONS & CHARACTERISTICS

Values are referenced at T_A = room temperature and V_R = 2.7V rated voltage (unless otherwise noted). Min and Max values indicate product specifications. Typical results will vary and are provided for reference only. Additional terms and conditions, including the limited warranty, apply at the time of purchase. See the warranty details for applicable operating and use requirements.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
POWER & ENERGY										
P _d	Usable Specific Power	BOL, Note 5,8	9.3	11.6	-	kW/kg				
P _{MAX}	Impedance Match Specific Power	BOL, Note 5,8	19.3	24.1	-	kW/kg				
Ed	Gravimetric Specific Energy	BOL, Note 5,8	2.2	2.4	-	Wh/kg				
E _{MAX}	Stored Energy	BOL, Note 5,8,9	4.6	5.1	-	mWh				
TEMPERATURE & THERMAL										
т.	Operating Temperature	Cell case temperature @ 2.7V	-40	-	65	°C				
T _A		Cell case temperature @ 2.3V	-40	-	85	°C				
Rth	Thermal Resistance	Case to ambient, Note 7	-	60	-	°C/W				
Cth	Thermal Capacitance		-	2.0	-	J/°C				
	PHYSICAL									
m	Mass		-	2.1	-	g				
-	Vibration – Sine Wave		li li	-						
-	Shock		IE	-						
SAFETY										
-	Certifications		UL810	-						

Page 3 Document Number: 3001974-EN.4 maxwell.com


NOTES


Surge Voltage Absolute maximum voltage, non-repetitive. The duration must not exceed 1 second.

Rated Capacitance & ESR_{nc} (Measurement Method)

 Capacitance: Constant current charge (10 mA/F) to V_p, 5 min hold at V_p constant current discharge (10 mA/F) to 0.1V.

 ESR_{DC}: Constant current charge (10 mA/F) to V_R, 5 min hold at V_R, constant current discharge (40 * C * V_R [mA]) to 0.1 V.

where C is the capacitance (F)

I is the absolute value of the discharge current (A);

V_R is the rated voltage (V).

V₁ is the measurement starting voltage, 0.8 x V_R (V).

 V_2 is the measurement end voltage, 0.4 x V_R (V).

t₁ is the time from discharge start to reach V₁ (s)

 t_2 is the time from discharge start to reach V_2 (s).

 R_S is the DC equivalent series resistance (Ω).

 ΔV is the voltage drop during first 10ms of discharge (V).

Leakage Current (Measurement Method)

• Current measured after 72 hours of constant voltage hold at V_R and 25°C. Initial leakage current can be higher.

· If applicable, module leakage current is the sum of cell leakage current and bypass current created by balancing circuit.

Current needed to discharge cell or module from V_R to 1/2 V_R in 1 second.

$$I_{PEAK} = \frac{\frac{1}{2}V_{R}}{\Delta t/C_{R} + R_{S}}$$

where I_{PEAK} is the maximum peak current (A).

V_R is the rated voltage (V).

 Δt is the discharge time (sec); $\Delta t = 1$ sec in this case.

C_R is the rated BOL capacitance (F).

 R_s is the maximum BOL ESR_{DC} (Ω).

• The stated maximum peak current should not be used in normal operation and is provided as a reference value only

Energy & Power (Based on IEC 62391-2 & IEC 62576)

• Usable Specific Power, P_d (W/kg) = $\frac{0.12V_R^2}{R_S \times m}$

• Impedance Match Specific Power, $P_{MAX}(W/kg) = \frac{0.25V_R^2}{R_s \times m}$

• Gravimetric Specific Energy, E_d (Wh/kg) = $\frac{E_{MAX}}{}$

• Stored Energy, E_{MAX} (Wh) = $\frac{\frac{1}{2}C \times V_R^2}{2.000}$

where V_R is the rated voltage (V): R_S is the rated BOL ESR_{DC} (Ω); m is the typical mass (kg); C_R is the rated BOL capacitance (F).

Projected Cycle Life

Constant current charge-discharge cycle from V_R to 1/2V_R at 25°C.

· Cycle life is dependent upon application-specific characteristics. Actual results

Continuous Current & Thermal Resistance

 Maximum current which can be used continuously within the allowed temperature range.

$$I_{MAX} = \sqrt{\frac{\Delta T}{R_{th} \times R_S}}$$

where I_{MAX} is the maximum continuous current (A).

ΔT is the change in temperature (°C). R_{th} is the typical thermal resistance (°C/W).

 R_S is the maximum BOL ESR_{DC} (Ω).

BOL & EOL Conditions

· BOL (Beginning of Life): Rated/Initial product performance.

EOL (End of Life):

- Capacitance: 80% of min. BOL rating (0.8 x min. C_R)

- ESR_{DC}: 200% of max. BOL rating (2 x max. Rs)

Transportation Regulation

· Per United Nations material classification UN3499, all Maxwell ultracapacitor cells have less than 10Wh stored energy to meet the requirements of Special Provisions 361. Both individual ultracapacitors and modules composed of ultracapacitors shipped by Maxwell can be transported without being treated as dangerous goods (hazardous materials) under transportation regulations.

DETAILED PRODUCT DESCRIPTION

Introduction

The BCAP0005 P270 S01 / S12 energy storage cell is a robust ultracapacitor solution in a cylindrical style can with radial lead terminals.

Technology Overview

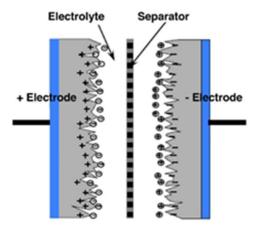
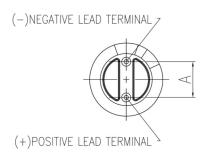
Ultracapacitors, also known as supercapacitors or electric double layer capacitors (EDLC), deliver energy at relatively high rates (beyond those accessible with batteries). Ultracapacitors store charge electrostatically (non-Faradaic) by reversible adsorption of the electrolyte onto electrochemically stable high surface area carbon electrodes. Charge separation occurs on polarization at the electrode/electrolyte interface, producing a double layer. This mechanism is highly reversible, allowing the ultracapacitor to be charged and discharged hundreds of thousands of times.

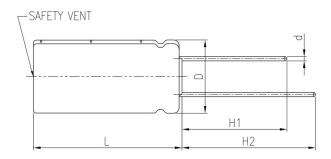
Ultracapacitor Construction

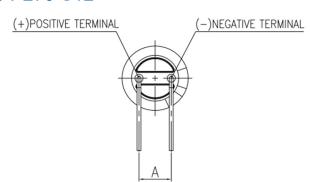
An ultracapacitor is constructed with symmetric carbon positive and negative electrodes separated by an insulating ion-permeable separator and packaged into a container filled with organic electrolyte (salt/solvent) designed to maximize ionic conductivity and electrode wetting. It is the combination of high surface-area activated carbon electrodes (typically >1500m²/g) with extremely small charge separation (Angstroms) that results in high capacitance.

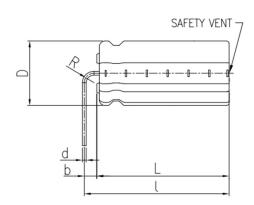
* Results may vary. Additional terms and conditions, including the limited warranty, apply at the time of purchase. See the warranty details for applicable operating and use requirements.

Ultracapacitor Energy = $\frac{1}{2}$ CV²


Figure 1: Ultracapacitor Structure Diagram


MECHANICAL DRAWINGS


BCAP0005 P270 S01

BCAP0005 P270 S12

Part Description	Dimensions (mm)									
	L	D	d	Α	H1	H2	R	а	b	
	(±1.0)	(±0.5)	(+0.05)	(±0.5)	(min.)	(min.)	(min.)	(±0.5)	(±0.3)	(max.)
BCAP0005 P270 S01	20.5	10.0	0.60	5.0	15.0	19.0	-	-	-	-
BCAP0005 P270 S12	20.5	10.0	0.60	5.0	-	-	2.0	11.5	1.9	23.5

Products and related processes may be covered by one or more U.S. or international patents and pending applications. Product dimensions are for reference only unless otherwise identified. Maxwell Technologies reserves the right to make changes without further notice to any products herein. "Typical" parameters which may be provided in Maxwell Technologies datasheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Please contact Maxwell Technologies directly for any technical specifications critical to application.

UCAP Power, Inc. Maxwell Technologies Korea

Global Headquarters Co., Ltd.

6155 Cornerstone Court East 17, Dongtangiheung-ro Suite 210 681 Beon-gil, Giheung-gu, San Diego, CA 92121 Yongin-si, Gyeonggi-do 17102

USA

Republic of Korea Tel: +82 31 289 0721

Tel: +1 (833) UPOWER 1 sales@maxwell.com Info@ucappower.com

MAXWELL TECHNOLOGIES, MAXWELL, MAXWELL CERTIFIED INTEGRATOR, ENABLING ENERGY'S FUTURE, DURABLUE, NESSCAP, XP, BOOSTCAP, D CELL and their respective designs and/or logos are either trademarks or registered trademarks of UCAP Power, Inc., and/or its affiliates, and may not be copied, imitated, or used, in whole or in part, without the prior written permission of UCAP Power, Inc. All contents copyright © 2021 UCAP Power, Inc. All rights reserved. No portion of these materials may be reproduced in any form, or by any means, without prior written permission from UCAP Power, Inc.

